论著

急性缺血性卒中患者颈动脉易损性斑块的临床分布特点及危险因素分析

栗静，田婷，石正洪，冯轼，赵立理

摘要 目的 分析急性缺血性卒中 (AIS) 患者颈动脉斑块的分布特点，探讨颈动脉易损性斑块的危险因素。方法 收集兰州大学第二医院神经内科2014年3月－2015年2月收治的588例AIS患者及性别、年龄匹配的630例非脑卒中患者的临床资料，分析两组颈动脉斑块的分布规律；根据颈部血管超声检查结果将AIS患者分为无斑块组 (247例)、稳定斑块组 (93例)、易损斑块组 (248例)。比较3组患者的临床资料，并进行多因素 logistic回归分析以确认颈动脉易损性斑块的独立危险因素。结果 AIS组和对照组颈动脉斑块检出率分别为57.99%、50.95%，其中易损性斑块检出率分别为42.18%、33.81%，AIS组颈动脉斑块和易损性斑块检出率均高于对照组，差异有统计学意义 (P<0.05)。颈动脉不同斑块组间年龄、性别比例、高血压、糖尿病及收缩压比较差异有统计学意义 (P<0.05)，多因素 logistic回归分析显示年龄 (OR=1.043，95%CI 1.027~1.061，P=0.000)、男性 (OR=1.973，95%CI 1.377~2.828，P=0.000)、糖尿病 (OR=1.454，95%CI 1.004~2.106，P=0.047)、收缩压 (OR=1.011，95%CI 1.002~1.020，P=0.016) 是 AIS 患者颈动脉易损性斑块的独立危险因素。结论 颈动脉易损性斑块破裂、脱落引发栓塞可导致AIS的发生；年龄、性别、糖尿病和收缩压是AIS患者颈动脉易损性斑块的独立危险因素。

关键词 卒中；斑块；动脉粥样硬化；危险因素；颈部血管超声

中图分类号 R743.3 文献标志码 A 文章编号 0577-7402 (2016) 09-0740-06

DOI 10.11855/j.issn.0577-7402.2016.09.08

Clinical distribution characteristics and analysis on risk factors of carotid vulnerable plaque in patients with acute ischemic stroke

LI Jing, TIAN Ting, SHI Zheng-hong, FENG Bin, ZHAO Li-li

Department of Neurology, Second Hospital of Lanzhou University, Lanzhou 730000, China

Corresponding author, E-mail: lzuszh@163.com

This work was supported by the Science and Technology Planning Program of Lanzhou (2011-1-134)

Objective To analyze the distribution characteristics of carotid plaque, and explore the risk factors for carotid vulnerable plaque in patients with acute ischemic stroke (AIS). Methods The clinical data were collected from 588 patients with AIS and 630 patients without AIS matched in gender and age admitted to the Department of Neurology, Second Hospital of Lanzhou University from Mar. 2014 to Feb. 2015. The distribution characteristics of carotid plaque between the two groups were analyzed. All AIS patients were classified as non-plaque group (n=247), stable plaque group (n=93) and vulnerable plaque group (n=248) according to the carotid ultrasonography results. The clinical data were compared among the different three groups, and multivariate logistic regression analysis was performed to identify the independent risk factors for carotid vulnerable plaque in AIS patients.

Results The detection rates of carotid plaque in AIS group and control group were 57.99% and 50.95%, and the detection rates of vulnerable plaque in the two groups were 42.18% and 33.81%, respectively; the detection rates of both carotid plaque and vulnerable plaque were statistically higher in AIS group than in control group (P<0.05). The age, gender, history of hypertension, diabetes and the level of systolic blood pressure among the three groups showed statistically significant differences (P<0.05); the multivariate logistic regression analysis revealed that age (OR=1.043, 95%CI 1.027~1.061, P=0.000), male gender (OR=1.973, 95%CI 1.377~2.828, P=0.000), diabetes (OR=1.454, 95%CI 1.004~2.106, P=0.047) and systolic blood pressure (OR=1.011, 95%CI 1.002~1.020, P=0.016) were the independent risk factors for carotid vulnerable plaque in patients with AIS.

Conclusions The embolism accompanied by carotid vulnerable plaque rupture or abscission may lead to the occurrence of AIS; the age, gender, diabetes and systolic blood pressure

基金项目 兰州市科技计划项目 (2011-1-134)
作者简介 栗静，硕士研究生。主要从事脑血管病方面的研究
作者单位 730000 兰州 兰州大学第二医院神经内科 (栗静、田婷、石正洪、冯轼、赵立理)
通讯作者 石正洪，E-mail: lzuszh@163.com
卒中目前已成为全球范围内首位致死致残性血管疾病之一。动脉粥样硬化（atherosclerosis，AS）是缺血性卒中的主要病因，其中由颈动脉粥样硬化导致的缺血性卒中约占30%。既往研究显示，颈动脉内膜中层厚度（intima-media thickness，IMT）每增加0.1mm，卒中的发生风险将增加18%。近年来人们逐渐认识到，在急性缺血性事件的发生中，斑块破裂继发附壁血栓形成比血管狭窄更重要。

研究发现，易损斑块是导致卒中反复发作的重要因素，易损斑块的识别对卒中预防和管理具有重要意义。

1. 资料与方法

1.1 研究对象 选取2014年3月—2015年2月兰州大学第二医院神经内科收治的AIS患者588例，其中男357例，女231例，年龄65.3 ± 11.4（35~93）岁。纳入标准：符合全国第四届脑血管病学术会议制定的诊断标准[15]，并经头颅CT或MRI证实有新发缺血性病灶；②发病7d内入院；③住院时间 ≥ 10d；④首次发病，或既往有脑卒中史但无遗漏神经功能缺损。排除标准：①发病时间不明确；②非缺血性脑卒中及其他脑血管事件；③合并严重的肝胆、肾脏、血液、心血管系统疾病；④合并严重感染、恶性疾病及自身免疫性疾病；⑤近3个月内使用激素、免疫抑制剂或细胞毒药物者；⑥检验或检查项目不全者。

收集该科同期住院的630例非脑卒中患者作为对照组，其中男560例，女70例，年龄65.2 ± 10.6（35~97）岁。纳入标准：①头颅CT或MRI显示正常，排除脑卒中；②既往无脑卒中或短暂性脑缺血发作病史。排除标准与AIS组相同。两组患者性别、年龄等基线资料差异无统计学意义（P>0.05，表1）。本研究已获本院伦理管理委员会批准，所有资料的收集经患者本人或家属知情同意。
块；斑块内膜≥20%的区域回声强弱不等，提示为
溃疡性斑块或伴出血等改变的混合性斑块。其中，
中等和强回声斑块属于稳定性斑块，低回声及混合
回声斑块为易损性斑块；同时存在稳定斑块和易损
斑块者归为易损性斑块。

1.3 统计学处理 采用SPSS 19.0软件进行统计分析。
对所有计量资料采用Kolmogorov-Smirnov方法
进行正态性检验。满足正态分布者以ξ±t表示，
两组间比较采用t检验，多组间比较采用单因素方
差分析，并进行方差齐性检验。多个样本间的多重比较，
若方差齐采用LSD-t检验，方差不齐采用Games-Howell检验；
不满足正态分布者以M(ξ，
P3)表示，组间及组内比较采用非参数检验。计数
资料以例数或百分比表示，组间比较采用χ²检验。
危险因素分析采用多因素logistic回归模型。P<0.05
为差异有统计学意义。

2 结 果

2.1 AIS组与对照组颈动脉斑块分布特征 588例
AIS患者中检出颈动脉斑块者341例(57.99%)，易
损性斑块248例(42.18%)；对照组共630例，检出
颈动脉斑块者321例(50.95%)，易损性斑块213例
(33.81%)。两组间斑块分布的差异有统计学意义
(χ²=9.253，P=0.010)；其中，AIS组颈动脉斑块和易
损性斑块检出率均高于对照组，差异有统计学意义
(χ²=6.077，P=0.014)；(χ²=9.052，P=0.003)，两组间
稳定性斑块检出率差异无统计学意义(表1)。

2.2 AIS患者颈动脉不同斑块组临床资料比较
将588例颈动脉斑块患者分为3个亚组：无斑块组
247例，稳定斑块组93例，易损斑块组248例。对3个亚组
患者的21项临床资料进行分析，结果显示三组间年
龄、男女比例、血压、血糖及收缩压差异有统计
学意义(P<0.05)；其中，与无斑块组比较，稳定
斑块和易损斑块组年龄及收缩压水平偏高(P<0.05)，易
损斑块组男性、高血压、糖尿病及胰岛素相关因子
水平升高(P<0.05)；与稳定斑块组比较，易损斑块
组男性比例及高密度脂蛋白水平更高(P<0.05)；余各
项因素比较差异均无统计学意义(表2)。

表1 AIS组与对照组基线资料及颈动脉斑块分布特征
Tab.1 Baseline data and carotid plaque distribution
characteristics of patients in AIS and control group

<table>
<thead>
<tr>
<th>Item</th>
<th>AIS group (n=588)</th>
<th>Control group (n=630)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>65.3±12.4</td>
<td>65.2±12.6</td>
<td>0.815</td>
</tr>
<tr>
<td>Male [n(%)]</td>
<td>357(60.71)</td>
<td>360(57.14)</td>
<td>0.206</td>
</tr>
<tr>
<td>Plaque detection results [n(%)]</td>
<td>341(57.99)</td>
<td>321(50.95)</td>
<td></td>
</tr>
<tr>
<td>Plaque</td>
<td>341(57.99)</td>
<td>321(50.95)</td>
<td></td>
</tr>
<tr>
<td>Stable plaque</td>
<td>93(15.81)</td>
<td>108(17.14)</td>
<td>0.533</td>
</tr>
<tr>
<td>Vulnerable plaque</td>
<td>248(42.18)</td>
<td>213(33.81)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

表2 AIS患者颈动脉不同斑块组临床资料比较
Tab.2 Comparison of clinical data among different carotid plaque groups of AIS patients

<table>
<thead>
<tr>
<th>Item</th>
<th>Non-plaque (n=247)</th>
<th>Stable plaque (n=93)</th>
<th>Vulnerable plaque (n=248)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>61.0±12.70</td>
<td>70.0(63.5, 76.0)</td>
<td>70.0(61.0, 76.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Male [n(%)]</td>
<td>138(55.87)</td>
<td>50(53.76)</td>
<td>169(68.15)</td>
<td>0.014</td>
</tr>
<tr>
<td>Hypertension [n(%)]</td>
<td>176(71.26)</td>
<td>75(80.65)</td>
<td>200(80.65)</td>
<td>0.007</td>
</tr>
<tr>
<td>Diabetes [n(%)]</td>
<td>61(24.70)</td>
<td>27(29.03)</td>
<td>87(35.08)</td>
<td>0.041</td>
</tr>
<tr>
<td>Hyperlipidemia [n(%)]</td>
<td>63(25.51)</td>
<td>22(23.66)</td>
<td>61(24.60)</td>
<td>0.934</td>
</tr>
<tr>
<td>CHD [n(%)]</td>
<td>13(5.26)</td>
<td>4(4.30)</td>
<td>21(8.47)</td>
<td>0.228</td>
</tr>
<tr>
<td>AF [n(%)]</td>
<td>17(6.88)</td>
<td>5(5.38)</td>
<td>14(5.65)</td>
<td>0.804</td>
</tr>
<tr>
<td>Smoking [n(%)]</td>
<td>37(14.98)</td>
<td>21(22.58)</td>
<td>43(17.34)</td>
<td>0.253</td>
</tr>
<tr>
<td>Drinking [n(%)]</td>
<td>28(11.34)</td>
<td>14(15.05)</td>
<td>30(12.10)</td>
<td>0.645</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>136.5±19.62</td>
<td>141.6±18.23</td>
<td>143.5±19.87</td>
<td>0.000</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>81.05±11.74</td>
<td>80.5±9.37</td>
<td>81.95±12.08</td>
<td>0.517</td>
</tr>
<tr>
<td>FBG (mmol/L)</td>
<td>4.97±4.41</td>
<td>5.0±4.53</td>
<td>5.32±4.56</td>
<td>0.215</td>
</tr>
<tr>
<td>TC (mmol/L)</td>
<td>3.89±3.31</td>
<td>3.97±4.57</td>
<td>3.91±4.52</td>
<td>0.039</td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>1.33±1.01</td>
<td>1.22±0.64</td>
<td>1.34±0.99</td>
<td>0.566</td>
</tr>
<tr>
<td>HDL-C (mmol/L)</td>
<td>1.12±0.91</td>
<td>1.13±0.96</td>
<td>1.09±0.90</td>
<td>0.100</td>
</tr>
<tr>
<td>LDL-C (mmol/L)</td>
<td>2.41±1.82</td>
<td>2.40±1.83</td>
<td>2.41±1.95</td>
<td>0.422</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>22.00±20.00</td>
<td>22.00±20.50</td>
<td>22.00±20.50</td>
<td>0.269</td>
</tr>
<tr>
<td>Hcy (μmol/L)</td>
<td>20.00±14.00</td>
<td>20.00±14.23</td>
<td>21.00±15.00</td>
<td>0.117</td>
</tr>
<tr>
<td>FIB (g/L)</td>
<td>3.05±3.04</td>
<td>3.05±3.12</td>
<td>3.05±3.12</td>
<td>0.546</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>16.52±12.74</td>
<td>15.84±12.58</td>
<td>17.49±12.85</td>
<td>0.225</td>
</tr>
<tr>
<td>Leukocyte (×10³/L)</td>
<td>6.49±5.97</td>
<td>6.21±5.72</td>
<td>6.53±5.47</td>
<td>0.237</td>
</tr>
</tbody>
</table>

CHD. Coronary heart disease; AF. Atrial fibrillation; SBP. Systolic blood pressure; DBP. Diastolic blood pressure; FBG. Fasting blood glucose; TC. Total cholesterol; TG. Triglyceride; HDL-C. High density lipoprotein cholesterol; LDL-C. Low density lipoprotein cholesterol; BMI. Body mass index; Hcy. Homocysteine; FIB. Fibrinogen; CRP. C-reactive protein. (1)P<0.05 compared with non-plaque; (2)P<0.05 compared with stable plaque
2.3 AIS患者颈动脉易损性斑块危险因素logistic回归分析

以AIS患者颈动脉斑块稳定性（0=非易损性斑块，1=易损性斑块）为因变量，表2中的所有项目为自变量，采用向后法，以多因素logistic回归模型分析AIS患者颈动脉易损性斑块的危险因素，结果显示，年龄（OR=1.043，95%CI 1.027-1.061，P=0.000）、男性（OR=1.973，95%CI 1.377-2.828，P=0.000）、糖尿病（OR=1.454，95%CI 1.004-2.106，P=0.047）、收缩压（OR=1.011，95%CI 1.002-1.020，P=0.016）为AIS患者颈动脉易损性斑块发生的独立危险因素（表3）。

表3 AIS患者颈动脉易损性斑块危险因素logistic回归分析

<table>
<thead>
<tr>
<th>Variables</th>
<th>β</th>
<th>SE</th>
<th>OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.043</td>
<td>0.008</td>
<td>1.043</td>
<td>1.027-1.061</td>
<td>0.000</td>
</tr>
<tr>
<td>Male</td>
<td>0.680</td>
<td>0.184</td>
<td>1.973</td>
<td>1.377-2.828</td>
<td>0.000</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.374</td>
<td>0.189</td>
<td>1.454</td>
<td>1.004-2.106</td>
<td>0.047</td>
</tr>
<tr>
<td>SBP</td>
<td>0.011</td>
<td>0.005</td>
<td>1.011</td>
<td>1.002-1.020</td>
<td>0.016</td>
</tr>
</tbody>
</table>

SBP: Systolic blood pressure

3 讨 论

缺血性卒中是多种因素共同作用的结果，其发病机制复杂多样[1-10]。动脉粥样硬化作为心脑血管疾病的病理基础，斑块形成是其显著的标志之一。据报道，15%左右的卒中和短暂性脑缺血发作由颈动脉易损性斑块引起[11]。本研究中，AIS患者颈动脉斑块发生率高达58.0%，其中易损性斑块占42.2%，二者皆高于对照组。Howard等[6]发现相较眼病患者，近期发生脑缺血事件者颈动脉内含有更多易损性斑块成分，与本研究结果相符。有研究表明，颈动脉腔内血栓、斑块增厚与破裂及斑块内出血、巨噬细胞浸润等可以预测卒中发生[17,21]。由此推测，在血管炎症的基础下，稳定性斑块不断进展成管腔狭窄、阻塞，易损性斑块因受到血流的冲击破裂、脱落，继而血栓形成引起栓塞，由此导致的血管血流学异常为颈动脉斑块患者缺血性卒中发生的主要机制。AIS患者较高的颈动脉易损性斑块发生率提示，分析其相关危险因素并积极干预，对脑血管病的防治有重要意义。

既往研究已证实，年龄、性别、高血压、糖尿病、高脂血症、吸烟等因素与动脉粥样硬化发生密切相关。动脉粥样硬化以动脉内膜的脂质沉积为始发病变，伴随纤维组织增殖和钙质沉积，在多种炎性细胞的参与下，逐渐形成粥样斑块。本研究结果显示，在AIS患者颈动脉不同斑块组危险因素的比较中，易损斑块组男性比例明显增加，年龄、收缩压水平均偏高，高血压、糖尿病患病率亦较高；多因素logistic回归分析在修正了传统的动脉粥样硬化危险因素后发现，年龄、男性、糖尿病和收缩压皆为AIS患者颈动脉易损性斑块的独立危险因素。本研究未发现脂代谢紊乱与易损性斑块发生的相关性，可能为AIS患者一度发现存在血管异常，会积极服用降脂药物将其调整为正常范围，导致其水平发生改变所致。吸烟亦未进入回归方程，这可能与研究对象的选取、种族地域及生活习惯等不同有关。

Rubinat等[22]报道称年龄、性别与颈动脉斑块的发生呈正相关。有研究显示，非钙化斑块随年龄增长易转变为钙化斑块，年龄可影响斑块稳定性[23]。van Lammeren等[10]对1385例行颈动脉内膜剥脱术患者的颈动脉斑块进行组织学分析发现，老年患者颈动脉斑块内富含脂质坏死核心，钙化且多且严重，平滑肌细胞数量减少，多因素分析也证实年龄是颈动脉易损性斑块的独立危险因素。年老后，血管呈退行性改变，血流速度减慢，且随年龄的增加，高血压、糖尿病及脂代谢紊乱等代谢性疾病的发生率逐渐升高，多种因素相互叠加，促进了易损斑块的形成。由于男女分泌激素种类、水平的差异以及不良生活方式、精神压力的影响，性别因素对颈动脉斑块的性质亦起着决定性作用。大量研究发现，相比女性，男性患者斑块内易损性成分更多[24-25]。因此，性别可以预测AIS患者颈动脉易损性斑块的发生，本研究中男性AIS患者发生颈动脉易损性斑块的风险是女性患者的1.973倍。

国内糖尿病患者动脉粥样硬化的发生率高达79.41%，其中一半以上发生于颈动脉[26]。研究表明，长期的高糖波动和胰岛素抵抗会影响冠状动脉斑块的稳定性[27-28]。目前关于糖尿病是否为颈动脉易损性斑块的危险因素尚存在争议[29-31]，这不排除样本量、斑块部位、研究方法及基础疾病等因素的差异对分析结果造成偏差的可能性。糖尿病易引发氧化应激和炎症反应，并联合多种机制致使细胞内皮受损，且糖代谢紊乱也会干扰血管代谢，在此基础上导致斑块发生、发展和稳定性的改变。

高血压前期就已有颈动脉IMT增厚和斑块形成[32]。Izzo等[32]对2143例高血压患者进行56.6个月的随访后发现，约1/3有新发颈动脉斑块形成。Marfella等[33]观察到伴有血压晨峰的高血压患者其颈动脉斑块内炎症成分较多，稳定性差。长期高血压导致血管内膜增厚，弹性减退，尤其是收缩压过高时，交感神经活性亦增强，多种血管物质含量增加，二者共同作用引起内膜损
伤，促使脂质沉积和血小板黏附、聚集，逐渐形成易损性斑块。因此，高血压患者颈动脉斑块趋向于不稳定性，相对来说，收缩压在斑块易损性转化的过程中作用更大，与多项研究结果相似[13,33]。

综上所述，颈动脉易损性斑块破裂、脱落，继发血栓形成导致栓塞是AIS发生的机制之一；年龄、性别、糖尿病和收缩压是AIS患者颈动脉易损性斑块的独立危险因素，多项因素协同作用通过加速颈动脉粥样硬化的进程而诱发斑块的易损性改变。因此，明确颈动脉易损性斑块的危险因素，有助于早期识别易损性斑块，筛查卒中高危人群，及时采取干预措施以预防卒中的发生。然而，本研究为回顾性研究，观察时间有限，对于缺血性卒中的防治，仍需多中心前瞻性研究进一步完善。

【参考文献】


