Effects of ING5 gene on the malignant phenotype of breast cancer Bcap-37 cells

SONG Yang1,2, WAN Yi-zeng3, ZHAO Shu-peng4,5, FANG Lei3, WU Ji-cheng2, SHI Shuai2, ZHENG Hua-chuan1

1Department of Pathology, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
2Cancer Research Central Laboratory, Tumor Basic and Translational Laboratory, 3Department of Thyroid and Breast Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
3Department of Thyroid and Breast Surgery, 4Department of Pathology, Shenzhen Luohu People’s Hospital, Shenzhen 518000, China
5Corresponding author. WAN Yi-zeng, E-mail: wyz_0905@126.com; ZHAO Shu-peng, E-mail: zhaosp2005@163.com

This work was supported by the Science and Technology Project of Liaoning Province (2015020339)

[Abstract] Objective To investigate the effects of inhibitor of growth 5 (ING5) gene on the proliferation, apoptosis, migration and cell cycle of human breast cancer Bcap-37 cells. Methods The eukaryotic ING5-expressing plasmid and GFP-empty plasmid were steadily transfected in Bcap-37 cells, the expression of green fluorescent protein was measured with fluorescence microscopy, and the high expression of ING5 was measured by real time-PCR. Bcap-37-ING5 cells served as the experimental group, Bcap-37-GFP cells as the mock group and Bcap-37 as the control group. The effects of ING5 on the proliferation were detected by MTT, the cell cycle and apoptosis were detected by Flow cytometry, and the cell migration was detected by cell wound scratch assay and Transwell experiment. Results Bcap-37 cell lines steadily expressing ING5 protein with GFP-tag were acquired by stable transfection. ING5 over-expression inhibited the proliferation and led to G1 arrest of Bcap-37 cells, increased cells apoptosis and decreased the cell migration ability (P<0.05). Conclusion ING5 over-expression may have reverse effect for malignant phenotype of breast cancer cells, and may be employed to indicate the biomarker of prognosis of breast cancer patients and regarded as a target of gene therapy.

[Keywords] breast neoplasms; inhibitor of growth; Bcap-37 cells; genes, tumor suppressor
功能丧失[9]。因具有抑制细胞生长并以p53蛋白依赖方式诱导细胞凋亡的生物学作用，ING5被认为是一种抑癌基因[9]，但其在乳腺癌中的作用目前仍不清楚。本研究观察了ING5过表达对人乳腺癌细胞Bcap-37增殖、凋亡、迁移及细胞周期的影响。

1 材料与方法

1.1 材料

1.1.1 细胞、质粒和试剂 pCDNA3.1-ING5表达质粒由加拿大拉瓦尔癌症研究中心Côté教授惠赠；乳腺癌Bcap-37细胞购自中科院上海细胞所；细胞转染试剂购自德国Qiagen公司；RPMI 1640培养基、胎牛血清、青霉素、链霉素、Trypsin胰蛋白酶等均购自美国Gibco公司产品；二甲基亚砜(DMSO)、噻唑兰(MTT)、顺铂(DDP)购自天津索罗门生物科技有限公司；Trizol试剂购自美国Gibco公司；Real-time PCR试剂盒、SYBR Premix Ex Taq™ II试剂盒购自北京生物制品研究所；Transwell小室购自美国BD公司。

1.1.2 主要仪器 培养箱购自美国Thermo公司；96孔板购自美国Corning公司；ELX800UV酶标仪购自美国Bio-Tek公司；FACScan™流式细胞仪购自美国BD Biosciences公司。

1.2 方法

1.2.1 质粒构建、细胞培养和转染 将pCDNA3.1-ING5质粒与载体(pEGFP-N1)进行BamHI和Hind III双酶切，构建pEGFP-ING5重组质粒。乳腺癌Bcap-37细胞接种于含100U/L青霉素、100mg/L链霉素、10%胎牛血清的RPMI 1640培养基中常规培养。

取对数生长期的Bcap-37细胞接种于6cm培养皿，待融合度达60%左右， PBS冲洗1次，加入200μl无血清培养基，将2.4μg重组质粒(ING5组加入pEGFP-N1空载体质粒)和9μl转染试剂分别加入到200μl无血清培养基中，37℃孵育15min，加入到培养皿中，放入培养箱中孵育12h后换液，转染后通过G418(800μg/ml)处理并筛选出单克隆细胞株，荧光显微镜下观察绿色荧光蛋白(EGFP)的表达情况[10]。Real-time PCR鉴定ING5 mRNA表达水平，取ING5高表达单克隆细胞株用于后续实验。细胞分为3组，即空白对照组、空载体组(转染pEGFP-N1空载体质粒)和ING5组(转染pEGFP-N1-ING5质粒)，转染步骤参照试剂说明书。

1.2.2 Real time-PCR检测 取3组对数生长期细胞，Trizol法提取总RNA，反转录为cDNA后进行PCR反应。ING5引物：上游5’-GGGAGATGATGGCTTG-G3’、下游：5’-CTTGGGTTGCTGATGA-3’；内参GAPDH引物：上游5’-CAATGCCCTCATTGACC-3’、下游5’-TGAAGATGGTGATGGGATT-3’。

反应条件：94℃1min，55℃1min，72℃1min，共35个循环[10]。采用2-ΔΔCT法计算mRNA的相对表达量。

1.2.3 MTT法检测细胞增殖能力 调整3组细胞浓度为1.8×10^4个/ml，接种于96孔板(每孔100μl)，每组设3个复孔，并设3个空白对照孔。待细胞贴壁后，分别在0、12、24、48h 4个时间点加入MTT溶液(5g/L)20μl，孵育4h后加入150μl DMSO，酶标仪测定各组吸光度值(A600)并计算增殖率，以时间为横轴，以增殖率为纵轴绘制生长曲线。

1.2.4 细胞凋亡检测 取处于对数生长期的3组细胞，加入500μl 1 Annexin V-FITC结合缓冲液重悬至单细胞悬液。采用PI/Annexin V FITC双染法，避光条件下加入5μl Annexin V FITC染料，室温避光孵育30min，加入5μl PI染料孵育15min，上流式细胞仪分析各组细胞凋亡情况并计算3组的凋亡率平均值。

1.2.5 细胞周期检测 取处于对数生长期的3组细胞，PBS冲洗后，加入4℃预冷的70%乙醇溶液固定2h，PBS冲洗后加入终浓度为1.25g/L的RNase，37℃孵育30min，加入5μl PI染料，4℃避光反应30min，上流式细胞仪进行细胞周期检测。

1.2.6 划痕实验 取处于对数生长期的3组细胞，接种于6孔板(每孔3.5×10^4个细胞)，待细胞单层贴壁且融合度达95%时，用200μl枪头划痕无血清培养液洗去细胞碎片后常规培养。分别于划痕后0、12、24、48h在显微镜下测量划痕宽度并拍照，使用图像分析软件计算细胞迁移率。细胞迁移率=(0h划痕宽度－相应时间点划痕宽度)/0h划痕宽度。

1.2.7 Transwell法细胞迁移实验 取处于对数生长期的3组细胞，以无血清培养基调整细胞浓度为5×10^4个/ml。每个小室于6孔培养板内加入600μl含10%FBS的完全培养基，培养24h后取出小室，用棉球擦拭除去上层小室的非迁移细胞，贴附在下层膜的细胞经4%多聚甲醇固定并用结晶紫溶液染色，光学显微镜下(100×)选取5个随机区域照相并计数穿膜细胞数量。

1.3 统计学处理 采用SPSS 11.0软件进行统计分析。满足正态性检验的计量资料以±s表示，采用单因素方差分析(One-way ANOVA)进行多组间比较，进一步两两比较采用SNK-q检验。不满足正态分布者以M(Q1，Q3)表示，多组间比较采用非参数秩和检验。P<0.05为差异有统计学意义。
2 结 果

2.1 ING5过表达细胞株的筛选 通过G418筛选成功获得了稳定高表达GFP的ING5单克隆细胞株Bcap-37-ING5(图1A)。Real-time PCR结果显示，ING5组细胞ING5 mRNA的表达水平明显高于空对照组和空载体组(P<0.05，图1B)，表明其已稳定高表达pEGFP-N1-ING5。

2.2 ING5对人乳腺癌Bcap-37细胞增殖的影响 在0、12和24h时间点，空白对照组、空载体组、ING5组的细胞增殖率无明显差异(P>0.05)，而在

图1 ING5转染Bcap-37细胞单克隆筛选
Fig. 1 Confirmation of ING5 transfectants
A. Construction of Bcap-37 cell lines stably expressing GFP or GFP-tagged-ING5; B. Bcap-37 cell lines stably expressing GFP-tagged-ING5 mRNA detected by real-time PCR. (1)P<0.05 compared with Bcap-37 group and mock group

2.3 ING5对人乳腺癌Bcap-37细胞凋亡的影响 流式细胞仪检测结果显示，ING5组细胞凋亡率为18.32% 0.43%，明显高于空白对照组(3.47% 0.58%)和空载体组(6.68% 1.45%)，差异有统计学意义(P<0.01)。而空白对照组和空载体组比较差异无统计学意义(P>0.05，图3)，表明ING5过表达可促进人乳腺癌Bcap-37细胞的凋亡。

图2 ING5过表达对乳腺癌细胞Bcap-37增殖的影响
Fig. 2 Effect of ING5 over-expression on the proliferation of breast cancer cells Bcap-37
(1)P<0.05 compared with Bcap-37 group and mock group

2.4 ING5对人乳腺癌Bcap-37细胞周期的影响 流式细胞仪检测显示，与空白对照组和空载体组比较，ING5组G1期细胞明显减少，G2期细胞明显增多(P<0.01，图4)，表明ING5组乳腺癌Bcap-37细胞处于G1期阻滞。

图3 ING5过表达对乳腺癌细胞Bcap-37凋亡的影响
Fig. 3 Effect of ING5 over-expression on the apoptosis of breast cancer cells Bcap-37
表1 INGS过表达对人乳腺癌Bcap-37细胞迁移的影响（x±s，n=3）

<table>
<thead>
<tr>
<th>Group</th>
<th>Cell migration rate</th>
<th>Transmembrane cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcap-37</td>
<td>40.02 ± 0.78</td>
<td>318 ± 4.95</td>
</tr>
<tr>
<td>Mock</td>
<td>35.13 ± 2.29</td>
<td>307 ± 3.00</td>
</tr>
<tr>
<td>INGS group</td>
<td>5.17 ± 0.58^{(1)(2)}</td>
<td>2.04 ± 2.50^{(1)(2)}</td>
</tr>
</tbody>
</table>

\(^{(1)} P<0.01 \) compared with Bcap-37 group; \(^{(2)} P<0.01 \) compared with mock group

3 讨 论

作为一种抑癌基因，定位于人类染色体2q37.3，包含8个外显子和7个内含子，ING5蛋白含有亮氨酸拉链样(LZL)、新保守区(NCR)、核定位序列(NLS)和植物同源(PHD)结构域。LZL结构域在DNA修复、凋亡诱导和染色质重建中发挥重要作用。NLS结构域决定了ING5蛋白的核定位，NCR结构域在基因表达和染色质重建过程中参与组蛋白乙酰转移酶(HAT)复合体的形成，而PHD结构域主要参与细胞的生长、衰老、凋亡、DNA修复和染色质重构。近年来研究指出ING5在肺癌[14]、肝癌[15]、胃癌[16]、头颈鳞状细胞癌[17]等恶性肿瘤中异常表达。以往研究发现，ING5可在转录水平诱导p21/waf1的表达，并与cyclin A1抑制剂作用、抑制细胞周期进程[16-17]。Liu等[17]报道ING5可协助Tip60乙酰化p53，通过p53与Tip60形成复合体而应对DNA损
伤，乙酰化的ING5随后绑定其靶向凋亡基因Bax和GADD45的启动子。研究发现，ING5在多种口腔肿瘤中存在表达下调、缺失和(或)突变，在头颈部鳞状细胞癌(HNSCC)中也观察到其ING5表达的下调及其蛋白水平[19]，且ING5蛋白表达与结直肠癌或胃癌的发生发展呈负相关[19-20]。本研究发现，在小鼠乳腺癌细胞Bcap-37中，与空白对照组和空载体组相比，ING5组的细胞增殖率显著降低(P<0.05)，提示ING5可抑制人乳腺癌细胞Bcap-37的增殖，与此同时，ING5组细胞凋亡率明显高于其他两组(P<0.01)，提示ING5过表达可诱导细胞凋亡，且与其他组相比，ING5组细胞G2期比例增高，G1期比例降低(P<0.01)，提示其诱发了G2期阻滞。乳腺癌可发生淋巴结和血行转移，但其从原位癌发展为转移性癌的确切机制仍不清楚。一旦肿瘤细胞从原发肿瘤处脱离，就会进一步侵入到宿主的细胞外基质、淋巴系统或血管，导致远处转移。大量研究显示，ING5可影响肿瘤细胞黏附、迁移和侵袭、细胞凋亡及上皮间质转化(EMT) [11,19-20]，并可抑制肺癌的扩散和转移[14]。本研究中划痕实验和Transwell迁移实验证实显示，与空白对照组和空载体组相比，ING5组细胞迁移能力明显降低(P<0.01)，提示ING5过表达不仅可以抑制肿瘤的发生，还能显著抑制人乳腺癌细胞Bcap-37的迁移。

综上所述，本研究结果表明，ING5作为一种抑癌基因，其过表达可逆转乳腺癌细胞的恶性表型，可作为乳腺癌基因治疗的一个新型生物标志物及潜在的治疗靶点。

【参考文献】

