高频振荡通气对早期急性呼吸窘迫综合征患者的治疗作用

张志刚，刘健，张彩云

[摘要] 目的 观察高频振荡通气(HFOV)对早期急性呼吸窘迫综合征(ARDS)患者的治疗效果。方法 通过自身对照研究，以符合纳入标准的25例ARDS患者为研究对象，记录HFOV开始前及HFOV开始后1、3、5d时患者的氧合指数(PaO₂/FiO₂)、平均气道压(Paw)、动脉血pH值、PaCO₂、肺静态顺应性(Cst)、心率(HR)、中心静脉压(CVP)、分流分数(Qs/Qt)、氧指数(OI)的变化，以及呼吸机相关性肺损伤(VILI)、呼吸机相关性肺炎(VAP)的发病率等指标。结果 所有患者HFOV治疗5d后胸部X线检查均较前有明显好转。3例患者在治疗7d后死亡，均为基础疾病所致，但其ARDS症状明显改善。HFOV治疗3d后，患者PaO₂/FiO₂、Cst明显高于治疗前，OI及Qs/Qt显著低于治疗前(P<0.05，P<0.01)；治疗后各时间点之间Paw、PaCO₂、动脉血pH值、CVP、HR、CI等参数差异均无统计学意义(P>0.05)。结论 HFOV可改善早期ARDS的氧合及肺部并发症。

[关键词] 高频通气；呼吸窘迫综合征，成人

[中图分类号] R563.8
[文献标志码] A
[文章编号] 0577-7402(2013)01-0058-04

Clinical observation on effects of high frequency oscillating ventilation on patients with early acute respiratory distress syndrome

ZHANG Zhi-gang1，LIU-Jian1，ZHANG Cai-yun2

1Department of ICU，2Department of Nursing，First Hospital of Lanzhou University，Gansu 730000，China

"Corresponding author，E-mail: mailmedicinliu@sina.com"

[Abstract] Objective To investigate the effect of high frequency oscillating ventilation (HFOV) on patients with early acute respiratory distress syndrome (ARDS) and its mechanism. Methods Through self controlled study, in 25 patients who met criteria of ARDS, their PaO₂/FiO₂, Paw, arterial blood pH, PaCO₂, Cst, cadiac index (CI), heart rate (HR), central venous pressure (CVP), percentage pulmonary shunt (Qs/Qt), oxygen index (OI) and incidence rate of ventilator associated lung injury (VALI), ventilator associated pneumonia (VAP) were recorded 1, 3, 5 days before and after HFOV. Results Five days later, X ray examination showed that all of the patients got better. Seven days later, 3 patients died because of original diseases, but their symptoms of ARDS improved. Three days after HFOV treatment, the value of PaO₂/FiO₂ (172.5 ± 69.8) and Cst (63.4 ± 10.5) increased compared with baseline (95.5 ± 29.5, 31.5 ± 4.5, P<0.05, P<0.01), while OI (12.8 ± 8.1) and Qs/Qt (0.28 ± 0.11) decreased compared with baseline (25.4 ± 13.5, 0.46 ± 0.12, P<0.05). There were not significant difference in Paw, PaCO₂, arterial blood pH, CVP, HR, CI and related parameters at different time point after treatment (P>0.05). Conclusion HFOV can improve oxygenation index and pulmonary complications of patients with early ARDS.

[Key words] high-frequency ventilation; respiratory distress syndrome, adult

高频振荡通气(HFOV)在很多临床研究中心被认为是治疗急性呼吸窘迫综合征(ARDS)的一种有效方法[1]。大量动物实验证实HFOV在肺保护性通气方面优于常频机械通气(CMV)[2]。在国内，有关HFOV的理论报道较多，但临床研究尤其是大样本的临床研究较少，而且HFOV通常也只作为CMV失败之后的替代治疗。本研究旨在通过观察HFOV对早期ARDS的治疗作用，探讨其在改善氧合、降低肺损伤等方面的作用。

1 资料与方法

1.1 研究对象 2009年11月－2011年12月兰州大学第一医院重症医学科收治的25例ARDS患者，男16例，女9例，年龄23～78(47.5 ± 21.4)岁，体重54～89(72.3 ± 17.5)kg，体重指数26.4 ± 4.3。25例患者中，11例为胸部外伤引起的ARDS，5例为重症肺炎，6例为肺内质纤维化，3例为多脏器功能衰竭(MOF)。循环衰竭者7例，占28.0%；糖尿病
患者6例，占24.0%；社区获得性肺炎患者10例，占40.0%；吸人性肺伤4例，占16.0%；脓毒性5例，占20.0%；双侧肺损伤11例，占44.0%；吸入性气管切开患者3例，占12.0%；吸入性气管插管患者22例，占88.0%。

1.2 方法
1.2.1 纳入及排除标准 纳入标准：①符合ARDS诊断标准；②早期ARDS（发病≤72h）；③严重低氧血症（PaO₂/FiO₂<80mmHg，持续12h以上，PEEP≥8cmH₂O）。排除标准：①患者拒绝行HFOV治疗；②治疗不足24h死亡；③中途放弃治疗。

1.2.2 常规治疗 ①抗菌素及液体管理：根据药敏结果选用选用抗菌素，采取保守的液体管理，在维持稳定的循环及氧供给基础上，避免液体超负荷，适当给予负平衡；必要时采用激素冲击治疗。②CMV：分别使用美国PB840、德国Trager Evita4呼吸机，采用肺保护通气策略，25例患者全部选择双水平气道正压通气，吸气压（Pr）15～25cmH₂O（1cmH₂O=0.098kPa），呼气压（PE）8～12cmH₂O，呼吸比1:1～1:3，氧浓度70%～100%，压力支持8～15cmH₂O；满足潮气量5～7ml/kg，在允许性高碳酸性酸碱度基础上滴定式选择最佳呼吸末正压通气（PEEP）为10～20cmH₂O及控制性肺膨胀（SI）。

1.2.3 HFOV治疗方法
1.2.3.1 HFOV治疗指征 在CMV条件下，吸入氧浓度（FiO₂）>90%，呼吸机显示平均气道压（MAP）>40cmH₂O，气道峰值（PIP）>45cmH₂O，呼气末气道正压（PEEP）>15cmH₂O，呼吸频率（RR）>40/ min，PaO₂持续低于50mmHg达6h以上。

1.2.3.2 HFOV治疗参数及调整 采用美国产3100B型高频振荡呼吸机，初调值如下：振荡频率5 ～10Hz，振幅85 ～102cmH₂O，FiO₂ 0.70～1.00，偏流流量20～30L/min，吸气时间百分比33%～40%，MAP 20～35cmH₂O。每隔1h记录各项生命体征变化，每4～8h查动脉血气1次，根据血气结果调整治疗参数。如果患者PaO₂下降，可采取以下措施（按先后顺序，每次调整1～2个参数）：上调FiO₂ 0.1～0.2，提高ΔP 0.49～0.98kPa（5～10cmH₂O），增加吸呼比（I/E）5%～10%，增加偏流1～2L/min；如果PaCO₂上升，可提高ΔP 0.49～0.98kPa（5～10cmH₂O），降低平均气道压（Paw）0.20～0.29kPa（2～3cmH₂O），降低I/E 5%～10%，期间尽量使用密闭式吸痰系统进行痰液清除。

1.2.3.3 HFOV治疗有效标准 患者生命体征稳定，经皮血氧饱和度>0.90；血气分析示pH 7.35～7.45，PaO₂>60mmHg，PaCO₂<50mmHg；X线胸片显示肺通气状况明显改善。此时逐渐下调治疗参数，至FiO₂为0.45～0.50，Paw为20～25cmH₂O时仍可维持上述动脉血气指标者，可考虑撤离高频通气机治疗。

1.2.4 监测项目 分别记录HFOV开始前及HFOV开始后1、3、5d患者的氧合指数PaO₂/FiO₂、Paw、动脉血pH、PaCO₂、静态顺应性（Cst）及氧分数（OI）变化。Cst=潮气量变化（Δ V₃）/压力变化（Δ P）。监测患者呼吸机相关性损伤（VALI）、呼吸机相关性肺炎（VAP）及其他呼吸系统相关并发症发生情况。

1.3 统计学处理 采用SPSS 12.0软件进行统计学分析。计量资料以x±s表示，采用重复测量的方差分析进行比较，P<0.05为差异有统计学意义。

2 结 果

2.1 HFOV治疗情况 25例患者中，13例患者的MAP在给予镇静肌松负荷量5min后出现一过性轻微下降；5例患者用药后血压下降明显，需用大量升压药维持循环，但在逐渐降低镇静肌松药剂量后，血压并未明显提升，而在撤离HFOV治疗后血压很快得到改善，如此循环2次，最后被迫再次使用CMV治疗。

25例患者在机械通气治疗过程中，共行机械通气177例次，HFOV 43例次，占24.3%，CMV 56例次，占31.6%，无创机械通气32例次，占18.1%，有创-无创序贯通气26例次，占14.7%，HFOV-CMV序贯通气20例次，占11.3%。

25例ARDS患者中，3例患者早期ARDS症状改善明显，但治疗7d后死亡，均为基础疾病所致；17例患者在治疗5d后过渡为CMV治疗，其中5例患者继经CMV治疗失败后又重新改为HFOV治疗；5例患者在HFOV治疗后10d转为CMV治疗。所有患者5d后胸部X线检查均显示较前有明显好转。25例患者HFOV治疗后各监测参数变化如表1所示。

2.2 HFOV并发症状发生情况 25例ARDS患者经HFOV治疗后41项并发症状发生率如表2所示。其中皮下气肿2例次，无气胸发生，呼吸系统并发症状34例次，循环系统并发症状5例次，胃肠道并发症状7例次。

3 讨 论

机械通气是治疗重型ARDS的重要方式，目前比较认可肺保护性通气策略。小潮气量通气的肺保护性通气策略可避免或减轻ARDS患者的VALI。2000年一项关于ARDS的临床研究显示，6ml/kg的
表1 HFOV治疗后各时间点监测参数变化（x±s, n=25）
Tab.1 Parametric changes at each time point after HFOV treatment (x±s, n=25)

<table>
<thead>
<tr>
<th>Item</th>
<th>Baseline</th>
<th>Day 1</th>
<th>Day 3</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaO2/FiO2 (mmHg)</td>
<td>95.5 ± 29.5</td>
<td>98.9 ± 29.8</td>
<td>172.5 ± 69.8(1)</td>
<td>230.4 ± 98.5(1)</td>
</tr>
<tr>
<td>OI (%)</td>
<td>25.4 ± 13.5</td>
<td>24.9 ± 12.9</td>
<td>12.8 ± 8.1(1)</td>
<td>11.7 ± 7.8(1)</td>
</tr>
<tr>
<td>PaCO2 (mmHg)</td>
<td>48.6 ± 9.2</td>
<td>47.5 ± 8.4</td>
<td>45.8 ± 7.9</td>
<td>47.0 ± 7.6</td>
</tr>
<tr>
<td>Arterial blood pH</td>
<td>7.30 ± 0.08</td>
<td>7.32 ± 0.08</td>
<td>3.8 ± 0.08</td>
<td>3.3 ± 0.08</td>
</tr>
<tr>
<td>Qs/Qt</td>
<td>0.46 ± 0.12</td>
<td>0.44 ± 0.10</td>
<td>0.28 ± 0.11(1)</td>
<td>0.29 ± 0.12(1)</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>80.2 ± 10.2</td>
<td>78.5 ± 11.2</td>
<td>81.5 ± 9.5</td>
<td>82.1 ± 10.1</td>
</tr>
<tr>
<td>CVP (mmHg)</td>
<td>9.80 ± 3.9</td>
<td>11.5 ± 4.1</td>
<td>12.2 ± 2.9</td>
<td>11.2 ± 3.0</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>99.8 ± 17.6</td>
<td>95.2 ± 17.5</td>
<td>91.5 ± 14.3</td>
<td>89.5 ± 16.7</td>
</tr>
<tr>
<td>CI ([L/min·m−2])</td>
<td>3.9 ± 1.2</td>
<td>4.1 ± 1.1</td>
<td>3.6 ± 0.9</td>
<td>3.7 ± 0.8</td>
</tr>
<tr>
<td>Cst (ml/cmH2O)</td>
<td>31.5 ± 4.5</td>
<td>35.7 ± 6.3</td>
<td>63.4 ± 10.5(1)</td>
<td>76.4 ± 12.3(2)</td>
</tr>
</tbody>
</table>

HFOV. High frequency oscillatory ventilation; OI. Oxygen index; Qs/Qt. Shunt equation; MAP. Mean arterial pressure; CVP. Central venous pressure; CI. Cardiac index; Cst. Static lung compliance. (1)P<0.05, (2)P<0.01 compared with baseline.

表2 HFOV治疗后并发症及其发生率
Tab.2 Complications and incidence thereof after HFOV treatment

<table>
<thead>
<tr>
<th>Complication</th>
<th>Case(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator associated lung injury</td>
<td>0(0.0)</td>
</tr>
<tr>
<td>Pneumothorax (single/double side)</td>
<td>2(4.2)</td>
</tr>
<tr>
<td>Mediastinal and subcutaneous emphysema</td>
<td>8(16.7)</td>
</tr>
<tr>
<td>Insufficient ventilation</td>
<td>15(31.3)</td>
</tr>
<tr>
<td>Respiratory system related complications</td>
<td></td>
</tr>
<tr>
<td>Oxygen toxicity</td>
<td>2(4.2)</td>
</tr>
<tr>
<td>Ventilator dependency</td>
<td>4(8.4)</td>
</tr>
<tr>
<td>Tracheoesophageal fistula</td>
<td>0(0.0)</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>4(8.4)</td>
</tr>
<tr>
<td>Aspiration</td>
<td>1(2.1)</td>
</tr>
<tr>
<td>Circulation system related complications</td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td>5(10.4)</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>0(0.0)</td>
</tr>
<tr>
<td>Gastrointestinal complications</td>
<td></td>
</tr>
<tr>
<td>Flatulence</td>
<td>2(4.2)</td>
</tr>
<tr>
<td>Alimentary tract hemorrhage</td>
<td>1(2.1)</td>
</tr>
<tr>
<td>Gastric retention</td>
<td>4(8.4)</td>
</tr>
</tbody>
</table>

小潮气量通气可降低ARDS患者病死率[3]。但是，由于ARDS存在明显异质性(病因、病变类型和病变累及范围不同，塌陷肺泡分布不均)及个体差异，6ml/kg的小潮气量通气并不适用于所有ARDS患者。制定个体化的潮气量通气方案成为ARDS保护性通气策略的重要方面[4-5]。

HFOV是20世纪80年代发展起来的一种新型机械通气方式，目前国内外仅限用于新生儿及儿童[6]，成人的应用尚处于初始阶段，缺乏相应的临床报道。在国外，HFOV最初用于成人ARDS是作为CMV失败后的一种补救治疗。近年来由于对机械通气下肺保护策略认识的提高，对HFOV有了新的认识。已有研究表明，对严重ARDS患者尽早应用HFOV的治疗效果更好[7-10]。

从本组22例存活的ARDS患者的机械通气过程可以看到，在由CMV过渡到HFOV的第1个24h，患者的氧合及呼吸学分析指标基本维持甚至低于CMV时的水平；经48h后，患者的氧合逐渐呈波动式提升，最后稳定在一个比较高的水平。对于这种情况，笔者认为是由于HFOV特殊的通气机制导致其对狭窄的小气道及闭塞的肺泡的扩张时间相对延长，而且扩张的过程也呈不稳定状态，因此在HFOV开始阶段，患者的氧合是下降的。还有一个原因可能是因为初始设置的平均气道压没有达到肺泡扩张的要求，随着HFOV的进行，患者的肺泡逐渐膨胀，在肺膨胀压的基础上反弹，肺泡趋于稳定，肺内压力和容积波动较小(避免气压伤和高容量伤)，在此阶段患者的氧合开始稳定提升。因此，HFOV在这一过程中的作用可大大提高患者的生存机会。

通过对比发现，在平均气道压相等的情况下，HFOV时患者肺容量明显高于CMV，所以HFOV有助于减轻肺负荷，可有效改善肺通气/血流比例失调，从而降低急、慢性肺损伤的发生率。Froese等[11-12]1997年的一个大样本研究也证实了在ARDS的治疗中，HFOV相对于CMV可明显降低VAlI的发生率。在此笔者根据上述患者的治疗经验，提出在HFOV期间必须按需吸痰，但要尽可能减少吸痰次数，如使用密闭式吸痰管等，因为每一次吸痰均可使之前的肺膨胀作用消失，之后需要很长的一段时间(约11b)才能重新达到吸痰前的氧合水平，所以吸痰结束后必须重新行肺复张治疗，使其尽快回复到吸痰前的水平。

同时，在临床上应用HFOV时必须持续使用大
剂量的镇静剂和肌松剂。在HFOV治疗时，若保留自主呼吸，则患者一般很难耐受，呼吸功耗会随之增加，另外由于HFOV特殊的供气方式，清醒患者也很难适应。

镇静肌松在临床中的应用也有很多问题值得关注。首先是对循环系统的影响[14]。本研究中出现的5例低血压并发症在降低镇静肌松药剂量后血压很快得到改善，因此考虑患者的血压下降可能与镇静肌松的首剂有关，但目前关于HFOV影响循环的临床报道很少。其次是患者的痰液自净能力丧失会导致严重后果，如延长机械通气、撤机和在ICU时间，甚至增加患者病死率等[15]。

本研究对上述22例存活患者采用HFOV-CMV无创正压通气(NIP)的序贯通气治疗，在HFOV改善氧合后改用CMV，之后在患者自主呼吸恢复、肌力尚可的情况下拔除气管插管插入无创通气，最后18例患者顺利脱机。4例患者还需间断无创正压通气支持。因此，笔者认为在维持氧合的同时应尽量减少有创通气，尤其是减少HFOV通气时间。但如何在HFOV时既保留患者的自主呼吸又不明显增加呼吸功耗，是现阶段HFOV的技术难点。目前已有关学者提出了一些改进措施如采用流量按需系统等[14-15]，但只是理论研究，尚未应用于临床。

综上所述，HFOV对改善早期ARDS的氧合及肺部并发症是有效的，但对于ARDS晚期尤其是出现肺纤维化后的治疗效果，目前的报道结果不容乐观。HFOV与目前的肺保护性通气策略在VALI和临床转归等方面还存在很大争议，能否作为其他类型ARDS患者的首选通气方式仍须进一步研究。此外，HFOV在成人患者中的临床操作经验还较少，如何发挥其最佳的肺保护性通气效果尚需进一步探讨。

【参考文献】


(收稿日期：2012-06-04；修回日期：2012-11-06)