Effects of huperzine A on acute hypobaric hypoxic-induced apoptosis of hippocampal neurons in rats

SHI Qing-hai 1, HAN Ru 2, FU Jian-feng 1, WEI Jing 1, GE Di 1, RAN Ji-hua 1, LIU Zheng-xiang 1

1Clinical Laboratory Diagnostic Center, 2Department of Pathology, Urumqi General Hospital of Lanzhou Command, Urumqi 830000, China

This work was supported by the Medical Scientific Research and Development Program of Lanzhou Military Command (CLZ11JB21) and the Hospital Talent Fund of Xinjiang Military Command (2009-62)

Objective To investigate the effects of huperzine A on ameliorating acute hypobaric hypoxic-induced spatial learning and memory deficits, and on relieving the apoptosis of hippocampal neurons in rats. Methods Forty-eight SD rats were randomly divided into four groups (12 each): the champaign (plain) group (control group), champaign+huperzine A group, high altitude group (simulated 6000m plateau) and high altitude+huperzine A group. One day before the decompression simulation experiment, rats in huperzine A-treated groups were given intragastrically with huperzine A suspension (10mg/ml) in a dose of 0.1mg/kg. The spatial learning and memory performance of rats in each group were tested by Morris Water Maze. The apoptosis of hippocampal neurons was determined by TUNEL. The expression of pro-apoptotic proteins (Bax) and anti-apoptotic protein (Bcl-2) of hippocampus tissues were evaluated by Western blotting. Results Compared with those in high altitude group, significantly shortened escape latency ($P<0.05$), more platform crossing within 60s ($P<0.05$), longer retention time in target ($P<0.05$), lower rate of hippocampal neurons apoptosis ($P<0.05$), down-regulated expression of Bax ($P<0.05$) and up-regulated expression of Bcl-2 ($P<0.05$) in the hippocampus tissues were found in the high altitude+huperzine A group. However, no significant difference in the above mentioned findings was found between high altitude+huperzine A group and champaign control group. Conclusion Huperzine A treatment may have a protective effect against acute hypobaric hypoxic-induced apoptosis of hippocampal neurons in rats, and it ameliorates spatial learning and memory deficits in rats.

Key words altitude sickness; neurobehavioral manifestations; hippocampus; apoptosis
的调控基因。石硫碱甲(hyperzine A)能增强中枢胆碱能神经功能。临床用于改善老年痴呆患者的健忘症状，除此之外还能提髙神经元抗氧化、抗兴奋性氨基酸毒性等作用[3]。尽管石硫碱甲在病理条件下能够发挥多种作用，但其在急性低压、低氧环境下对大脑海马神经元细胞凋亡的影响仍不明确。本研究通过观察石硫碱甲对急性低压、低氧模型大鼠海马神经元细胞凋亡及凋亡相关蛋白Bcl-2和Bax表达的影响，探讨石硫碱甲对急性低压、低氧模型大鼠的神经保护作用。

1 材料与方法
1.1 主要试剂及仪器 FLYDWC-LA型低压氧动物
实验室(中航工业)，Morris水迷宫MRT-200(成都泰盟)，Nikon80荧光显微镜(日本尼康)，双垂直电泳仪DG-24DN、半干电转膜仪DYCZ-40C(北京六一仪器厂)，荧光细胞凋亡检测试剂盒(Promega DeadEnd™ Fluorometric TUNEL System)，Bax兔多抗IgG(SC-526)、Bcl-2兔多抗IgG(SC-783)、GAPDH(FL-335)兔多抗IgG(SC-25778)及Goat anti-rabbit IgG-HRP(SC-25778)均为美国Santa Cruz公司产品，ECL化学发光试剂盒(美国Pierce SuperSignal)。

1.2 实验动物分组及给药 健康雄性SD大鼠
48只(购于新疆医科大学实验动物中心)，体重240～280g。随机分为4组：对照组(对照组)、原
给药组、高海拨(模拟6000m海拔)、高海拨给药组。石硫碱甲片剂(批号100401，规格50μg/片)由河南竹林众生制药股份有限公司提供。将片剂研磨粉碎，加入适量双蒸水配制成混悬液(10mg/ml)备用。原给药组和高海拨给药组大鼠在正式模拟低压、低氧实验前1d，按每千克体重0.1mg/kg灌胃给药，至模拟急性低压、低氧饲养结束为止。

1.3 模拟急性低压、低氧饲养条件 将模拟低压、低氧组大鼠置于高原环境模拟舱内，以40m/s的速度分别升至6000m，气压稳定在354 ± 2mmHg。24h自然昼夜交替，不间断地以5.5L/min的速度注入新鲜空气以提供饲养动物所需氧气，同时排出二氧化碳，舱内温度维持在24 ± 2℃，湿度30% ~ 40%，大鼠自由进食水。高海拨组和高海拨给药组连续低压、低氧饲养，期间每天减压给药1次，随后立即放回模拟舱。模拟急性低压、低氧饲养结束后，4组大鼠分为两部分分别进行Morris水迷宫实验和海马组织病理及凋亡因子检测。

1.4 Morris水迷宫实验 模拟急性低压、低氧饲养
7d后，4个实验组每组随机选取6只大鼠(共计24只)进行水迷宫实验，测试方法如下。①定位导航测
试：用于检测大鼠对水迷宫学习记忆的获取能力。每天训练4次，分别从4个不同的入水点将大鼠面向
池壁放入水中，平台总位于对侧象限，如果大鼠在60s内未找到平台，则逃避潜伏期记为60s，需将其
引至平台，大鼠站立于平台10s后，将大鼠从平台上取下来休息60s，按顺序由下一入点入水进行下一次实
验。观察并记录5d训练期间大鼠每次寻找平台所
需的逃避潜伏期(s)。②空间探索实验：用于检测大
鼠学会寻找平台后，对平台空间位置记忆的保持能
力。第5天定位导航测试完毕后，撤除平台，选择第3象限池壁中点作为入水点，将大鼠面向池壁放入水中，测试其在60s内跨过目标象限平台，即原平台相应位置的次数(次)和原平台所在象限停留时间(s)。[6]

1.5 TUNEL法检测海马神经元凋亡情况 模拟急性
低压、低氧饲养7d后，4个实验组剩余大鼠(未进
行水迷宫实验的大鼠)共计24只，用1%戊巴比妥
(40mg/kg)腹腔注射麻醉，开胸暴露心脏，4℃生理
盐水100ml心室灌注。继续用4%多聚甲醛PBS液
(4℃，pH7.4)300ml灌注内固定，待大鼠四肢及肝
脏等发白变硬后迅速断头取脑组织并完全分离
出海马组织。每只大鼠一半海马组织置于4%多聚
甲醛/25%蔗糖溶液(4℃)固定过夜，另一半进行脑
组织匀浆处理。海马组织石蜡包埋，后冠状连续切
片(5μm)，以TUNEL法原位检测各组大鼠海马CA1
区凋亡细胞，操作过程严格按照TUNEL检测试剂
盒说明书进行，荧光显微镜观察，TUNEL染色阳
性细胞可见细胞呈现亮绿色荧光。每只大鼠取5张切
片，在400 × 显微镜下随机观察海马CA1区，采用
显微图像分析系统采集图像，每张切片随机计数5
个视野，记录单位视野中的阳性细胞数，取其平均值进行统计分析。

1.6 海马组织中Bcl-2、Bax蛋白的表达 海马组
织称重后剪切成细小碎块，置于1ml匀浆器球状
部位，按照每200g组织加入200μl裂解液的比例
加入裂解液[50mmol/L Tris(pH7.5)、150mmol/L NaCl、1mml/L PMSF、1μg/ml Aprotinin、1μg/ml Leupeptin、1%NP-40、0.5%脱氧胆酸钠]，冰上上下
移动匀浆棒至匀浆液均一，置冰上裂解30min，用
移液器移至1.5ml离心管中，4℃，12000r/min离
心10min，取上清装于0.5ml离心管中并置-20℃保
存放用。BCA法检测上清中蛋白质浓度。100℃变
性10min，上样20μg，12% SDS-PAGE分离后转
膜；5%脱脂奶粉常温封闭2h，TBST洗涤3次，分
别与1:1000稀释的Bax、Bcl-2及GAPDH抗体反应；室
温培1h，洗涤3次，再加入1:5000稀释的二抗，室
温培1h，洗涤3次；ECL化学发光显色，X线胶
片曝光，显影，定影，Gel-Pro Analyzer 4.0软件进行
灰度分析。以兔抗鼠GAPDH作为内参。
1.7 统计学处理 采用SPSS 16.0软件进行统计学分析，数据以x±s表示，多组间比较采用单因素方差分析，两两比较采用q检验(SNK)，P＜0.05为差异有统计学意义。

2 结 果

2.1 Morris水迷宫实验 在定位导航实验中，各组大鼠逃避潜伏期随训练时间推移逐渐缩短，但在每一点之间，高海拔组大鼠的逃避潜伏期均较平原组延长，差异有统计学意义(P＜0.05)，即需要花费更长时间才能找到平台。而与高海拔组相比，每一点高海拔组大鼠的逃避潜伏期均缩短(P＞0.05)，且差异无统计学意义(P＞0.05)，图1)。在空间探索实验中，与平原组相比，高海拔组大鼠60s内穿越平台次数和目标象限滞留时间明显减少(P＜0.05)。与高海拔组相比，高海拔组60s内穿越平台次数明显增多(P＜0.05)，目标象限滞留时间明显延长(P＜0.05)，且差异无统计学意义(P＞0.05)，图2、3)。

2.2 高海拔及高海拔+美多巴海马CA1区神经元凋亡数量均明显增加(P＜0.05)。而与高海拔组相比，高海拔组大鼠海马CA1区神经元凋亡数量明显减少(P＜0.05)，平原组和高海拔组比较差异无统计学意义(P＞0.05)，图4)。

2.3 高海拔及高海拔+美多巴海马CA1区细胞凋亡因子Bax表达明显增加(P＜0.05)，抗凋亡因子Bcl-2表达明显降低(P＜0.05)。与高海拔组相比，高海拔组大鼠海马组织中Bax表达降低(P＜0.05)，Bcl-2表达增高(P＜0.05)。平平原组和高海拔组差异无统计学意义(P＞0.05)，图5)。

图1 各组大鼠找到平台所用时间(逃避潜伏期)变化

Fig.1 Changes of time reaching the target platform (escape latency) in experimental rats

(1)P＜0.05 compared with champaign group; (2)P＜0.05 compared with high altitude group

图2 各组大鼠60s内穿越平台次数

Fig.2 Times of crossing the former platform of rats within 60s

(1)P＜0.05 compared with champaign group; (2)P＜0.05 compared with high altitude group

图3 各组大鼠目标象限滞留时间

Fig.3 Time spent in the target quadrant of rats

(1)P＜0.05 compared with champaign group; (2)P＜0.05 compared with high altitude group

图4 大鼠海马CA1区凋亡细胞计数

Fig.4 Number of apoptotic cells in CA1 region of rat’s hippocampus

(1)P＜0.05 compared with champaign group; (2)P＜0.05 compared with high altitude group

3 讨 论

高原环境具有低气压、低氧、高寒等特征，会对人体生理状况产生严重影响[7-9]，行为学测试已证实，急进高原人群智力、学习、记忆等认知功能均受到明显损害[10-11]，但是大脑认知功能损害的机制目前尚不清楚。石杉碱甲是从中药千层塔中提取的一种生物碱，临床用于改善
老年痴呆患者的健忘症状[5-7,10,12]，此外它在提高神经细胞抗氧化活性、抗细胞凋亡及兴奋性氨基酸毒性等作用方面也有报道[13]。但石杉碱甲在急性低压、低氧环境下对大脑海马神经元细胞凋亡的影响仍不明确。

本研究模拟急性低压、低氧应激诱导大鼠急性高原损伤，Morris水迷宫测试结果显示，经石杉碱甲给药后，大鼠逃避潜伏期明显缩短，60s内穿越平台次数明显增多，目标象限滞留时间明显延长，表明石杉碱甲能够改善模型大鼠的空间学习与记忆能力；TUNEL法原位检测及Western blotting结果显示，经石杉碱甲给药后，大鼠海马CA1区神经元细胞凋亡数量明显减少，海马组织中促凋亡因子Bax表达明显降低，抗凋亡因子Bcl-2表达明显升高，表明石杉碱甲能够提高模型大鼠海马神经元细胞对抗细胞凋亡，降低细胞凋亡水平。以上实验结果表明，石杉碱甲对急性低压、低氧致的大鼠大脑海马神经元细胞凋亡具有缓解作用，同时还可改善模型大鼠的空间学习与记忆能力。

高原环境对人脑的认知损伤现象是客观存在的，必须研究有效、可靠的认知增强药物，以缓解恶劣环境对大脑认知功能的损伤。本研究评价的药物石杉碱甲在动物模型中获得了良好效果，具有良好的应用价值，值得进一步深入研究。

【参考文献】

(收稿日期：2012-05-12；修回日期：2012-07-11)